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Abstract 

We present a conjecture on the generic Betti numbers of level algebras. We prove the con- 
jecture in the case of Gorenstein Artin algebras of embedding dimension four, and in the case 
of Artin level algebras whose socle dimension is large. Furthermore, we present computational 
evidence for the conjecture. @ 1999 Elsevier Science B.V. All rights reserved. 

ZYYI Math. Subj. Cluss.: Primary 13D02; secondary 13A02; 13D40 

1. Introduction 

Level algebras - introduced by Stanley [20] - are often encountered in various 

applications of commutative algebra, such as algebraic geometry and algebraic com- 

binatorics. The level algebras of maximal Hilbert function among all level algebras 

of given codimension and socle type are called compressed level algebras and fill a 

non-empty Zariski open set in the natural parameter space. 

Here we will study the Betti numbers of compressed level algebras. Though the 

Hilbert function is known it is still very hard to determine the Betti numbers completely. 

We give lower bounds for these Betti numbers and we conjecture that these bounds 

are sharp. 

For the coordinate ring of a generic set of points in projective space there is a similar 

conjecture, the Minimal Resolution Conjecture, MRC, by Lorenzini [18]. Much work 

has been done on the MRC including a recent result by Hirschowitz and Simpson [ 141 

stating that it holds if the number of points is large enough compared to the embedding 

dimension. 

The Minimal Resolution Conjecture implies part of our conjecture but there are also 

some cases where it seems as the MRC does not hold while our conjecture still holds. 
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In Section 3.4 we will show the relation between the case of compressed algebras and 

the case of generic points. 

We are able to prove our conjecture in two cases. 

l When the socle is large we can apply the theorem on linear syzygies of generic 

forms by Hochster and Laksov [ 151 to prove the conjecture. 

l For Gorenstein Artin algebras of codimension 4, we use the Minimal Resolution 

Conjecture for points in P3 proved by Ballico and Geramita [l], and the embedding 

of the canonical module of the coordinate of points as an ideal of a certain initial 

degree to obtain the conjecture. 

We also present extensive computational evidence for our conjecture in terms of 

calculations done with the computer algebra system Mucuulay [2]. 

I. I. Compressed level ulgehras 

In this section we recall some notations and basic results on compressed level al- 

gebras. References are larrobino [ 16,171, Froberg and Laksov [IO], and a joint work 

with Laksov [5]. 

Setup 1.1. Let R =k[xl,xz,. . . , x,] be the polynomial ring in r independent variables 

x1 ,x2,. . .,x, over an infinite field k. We give R the natural grading by assigning all 

variables degree 1. Denote by J&“~ the monomials of degree d in R. For any k-subspace 

V in R,, we write 

(V:R)d={a~Rdlab~ V, for all b~R+d}, (1.1) 

for d = 0, 1,. . . Let I be a homogeneous ideal of R and let A=R/I. The socle of 

A is defined by Sot A = {u E A / ab = 0, for all b in RI }, where we look at A as an 

R-module. We say that an Artin algebra A = R/I is level if its socle is concentrated in 

one degree c, which is the highest non-empty degree of A. Furthermore, A is Gorenstein 

if dimkSocA= I. 

Recall the following fact on level algebras (cf. [5, Proposition 2.41). 

Proposition 1.2. Let A = R/I be a gruded Artin quotient of R. Then A is level tvith 

socle in degree c if‘ and only if there is u subspuce VCR, such thut I = ed>” _ 
(V:R)d. 

We now recall the definition of compressed level algebra (cf. [ 16, lo]). 

Definition 1.3. Let A be an Artin level algebra quotient of R with socle in degree L’. 

Then A is compressed if its Hilbert function is given by 

HA(d) = dimk Ad = min{dimk R,,,s dimk R<._d}, ( 1.2) 

for d = 0, 1, . . . , c, where s is the k-dimension of the socle. 
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The Hilbert function of a compressed algebra A is the maximal possible among all 

algebra whose socle is of the same type as the socle of A. In fact there are compressed 

level algebras, according to the following proposition (cf. [ 16,5, Theorem 3.41). 

Proposition 1.4. Let V be u codimension s subspuce of R, in generul position, and 

let I = @,,,( V : R)d. Then A = R/I is a compressed Artin level ulcgebra with so& of’ 

dimension s in degree c. 

2. Minimal free resolutions and Betti numbers 

In this section we give the notations and basic results needed for working with level 

algebras, minimal free resolutions and Betti numbers. A suitable reference for most of 

this material is Cohen-Mucuulay Rings by Bruns and Herzog [6]. 

Setup 2.1. Let R=k[x,,xz ,..., x,] be the polynomial ring in r independent variables 

x1,x2,. . ,xr over k. Denote by OR the canonical module R(-r) of R. If A4 is an 

artinian finitely generated R-module, we define the dual module M” as Homk(M, k). 

The module M” has an R-module structure defined by x$(y) = 4(xy) for all x, y E R 

and all $I E M”. The grading of M” is naturally given by Mi = Homk(M_d, k), for all 

d E Z. Thus if M is graded by non-negative integers, M” is graded by non-positive 

integers. In the same way we can define a graded R-module HomR(M,R) for all graded 

R-modules A4. We observe that k is a graded R-module via the augmentation map 

R + k, and thus it is zero except in degree 0. 

Let M be a finitely generated graded R-module. By the Hilbert Syzygy Theorem [6, 

Corollary 2.2.141 there is a finite free graded resolution 

(2.1) 

where bo, bl, , b, are the Betti numbers of M and {n;. j} are the numerical charucters 

of M, under the assumption that the resolution is minimal, i.e., if all the entries of the 

matrices of i;i are in the irrelevant maximal ideal m of R. The numerical characters 

are uniquely defined by M if we assume that n,+l,i > n,j_ i (cf. [6, Proposition 1.5.161). 

In the following proposition we have collected some facts that will be very useful 

in the study of Betti numbers of Artin level algebras. (cf. [6, Theorems 3.6.17 and 

3.6.191 for (i)-(v) and Frijberg and Laksov [lo] for (vi)-(viii).) 

Proposition 2.2. Let M be un urtinian finitely generuted gruded R-module. Then the 

,following hold: 

(i) M” is urtiniun andjinitely generated. 

(ii) Extk(M, WR) = 0 _ftir i < r. 

(iii) M” g Ext;(M, OR). 
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(iv) If F. is a minimal free resolution of M, then Fz is a minimal free resolution 

Of W. 
(v) Torf(M,k)d z Torf_i(MV, k),._d, for i = 0, 1,. . , r and d E Z. 

(vi) n~,~<nt,i+t and nt,,,;<nt,,+,,i+1,,for i=O,l,..., y- 1. 

(vii) The numerical characters of M determine the Hilbert function oj’M by 

(2.2) 

(viii) If the numerical characters oj’M satisjy nh,., <nl,i+l, for 0 5 i<r. Then they> 

are determined by the Hilbert function of M. 

We recall some notation for the Koszul complex, which is a minimal free resolution 

of k over R (cf. [6, Section 1.61). 

Definition 2.3. Let W be a vector space of dimension r over k with a basis given by 

{el,e2,. . . ,e,}. Then we can define the Koszul complex, K., of x1,x2,. .,x, as follows: 

For any i= 1,2,..., r, define Ki = Ai W @ R(-i) and define the R-linear map 6i : 

/ji W@R(-i)+A\'-' W@R(-i+ 1) by 

&(ej, Aej2A ... Aej!)= k(-l)‘+‘ej, A ... Azj,A . . Aej,@xj,. 

/=I 
(2.3) 

We will use the notation ci,,jz ,,,,, j, = ej, A ejz A A ej, for the natural basis elements 

in Ai W. Furthermore, we will write Y(i) for the set of ordered i-tuples (,jl, j2 ,...,ji), 
with 1 < jt < j2 < . . . < ji < Y. 

Since the Koszul complex, K., is a minimal free resolution of k as an R-module it 

gives us the possibility to compute Torf(A, k) as Hj(A @R K.). 

We will need the following two propositions, proved by Cavaliere et al. [S, Propo- 

sition 1; 9, Proposition 1.31. 

Proposition 2.4. Let el,e2,. . . , e, be a basis jar the vector space W and let K. be 

the Koszul complex dejined in (2.3). Then we have that a basis for the image qf 
di:/\‘W@RR,_l +Ai-’ WED Rr is given by the images qf ej, A . . A ejl @rn where 

jl <j,< ‘.. <: ji and m is a monomial of degree t in the variables xj, ,x,,+l, . ,x,.. 

The dimension of im(6i) is (iPfri-‘) (‘,A:‘). 

Proposition 2.5. Let I be a homogeneous ideal in R of initial degree t and let A = R/I. 

Then we have 

Tor”(A, k)+_l E ker(rc) n ker(6i_t ) for i = 2,3,. . . , r, (2.4) 
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where 6i_ 1 is the mup Ai-’ W @ Rt + Ai-’ W @ Rr+l of the Koszul complex and rt is 

the quotient mup /\‘-I W ~3 R, + //-’ W ~$3 Al. 

We also recall that there is a homological criterion on an Artin algebra to be level 

(cf. [ 101). 

Proposition 2.6. Let A = R/I be u graded Artin algebra. Then there is an isomorphism 

of graded R-modules Sot A( -r) 1 Torf(A, k). In particular, A is level <f and only 

ij’ there is un integer c such that TorF(A, k)d = 0, for d # r + c. 

Remark 2.7. Proposition 2.6 provides us with an alternative definition of level alge- 

bras, which is useful even in the higher dimensional Cohen-Macaulay case. We can see 

this from the isomorphisms between the Torf-modules of A and the Tar”‘-modules of 

the artinian reduction A’ = A/(al,az,. . . ,a,) of A, where R’ = R/(yl, ~2,. . . , yn), and 

JQ:/Hai, for j= 1,2 ,..., n. In fact, we have that if F. is a free resolution of A, 

then F. @R R’ is a free resolution of A’ and the result follows since F. @R k 2 

F. ‘%R (R’ @.R’ k) ” (F. @RR’) @‘R’ k. 

3. Betti numbers of compressed Artin level algebras 

In the following sections we will investigate the Betti numbers of compressed Artin 

level algebras. Because Proposition 1.4 tells us that the generic Artin level alge- 

bra is compressed, which means that the Hilbert function is known, it is tempting 

to suggest that the situation for the Betti numbers is similar. This is true in the 

sense that all generic compressed Artin level algebras, of given embedding dimen- 

sion and socle type, have the same Betti numbers. The difference from the case of the 

Hilbert functions of compressed algebras is that is not so easy to determine these Betti 

numbers. 

We start by examining a very special case of compressed Artin level algebra which 

can be expressed as R/m’+’ where m is the irrelevant maximal ideal of R. Thus we 

have that the initial degree of the kernel R + A is c + 1. The reason why we treat 

this case separately is that it will be convenient to assume that the initial degree of 

compressed algebras is at most c, where c is the degree of the socle. 

Proposition 3.1. Let A = R/m’+‘. Then Torf(A, k) is concentrated in degree i+c, jot 

i= 1,2,..., r and the Betti numbers of A are given by 

b,=dimkTorf(A,k)i+c= (‘:;r ‘> (‘,‘l) ,for i=1,2,...,r. (3.1) 

Proof. Since the socle of A is contained in degree c we have from Proposition 2.6 

that Tor:(A,k) is concentrated in degree c + r. The generators of the ideal nr all 
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have degree c and therefore Torp(A, k) is concentrated in degree c + 1. Now it fol- 

lows from Proposition 2.2(vi) that Tor”(A,k) is concentrated in degree i + c for 

i= I,2 ,..., r. 

We now use Proposition 2.5 to compute the Betti numbers of A. The quotient map 

rc:r\‘-’ W@‘RR,+, 4 A’-’ W @G AL.+, is the zero map since the kernel is all of R,.,, . 

Hence we have that TorF(A, k) ” kcr(iii_1) = im(6,), whose dimension is given by 

Proposition 2.4. 0 

We can now give a homological criterion on a level algebra to be compressed (cf. 

[lo, Proposition 161 for one direction). 

Proposition 3.2. Let A = R/I be an Artin level algebra with socle in degree c und 

let t be the initial degree of I. Then A is compressed if and only if Tor”(A,k) is 

concentrated in degrees t + i - 1 and t + i, ,for i = I, 2,. . . , Y - 1. 

Proof. We note that Torr(A, k)= 0 in degrees less than t is equivalent to say that 

dim,, Ad = dimk R,l for d < t. Let s = dimk Sot A = dimk A,.. We now look at the dual 

module A”(-c). We have that this module is a quotient of R”, which means that 

Torp(A”(-c), k) = 0 in degrees less than c+ 1 - t if and only if dimk A”(-c)d = dimk 

Rs =s dimk R,l, for d <c + I - t. Using Proposition 2.2(v) we see that 

Tor?(AV(-c),k)d = Tor:_,(A,k),.+C.--d. (3.2) 

Hence Tot$, (A, k) = 0 in degrees greater than r - 1 + t is equivalent to the condition 

that Torp(A”(-c), k) = 0 in degrees less than c + 1 - t. But this is equivalent to say 

that dimk A”( -c)d = s dimk Rd, for d <c+ 1~ t. Moreover, dimk A”( -c)d = dimk A,,-,/. 

Hence we have that Tar,!_, (A, k) = 0 in degrees greater than r - I + t is equivalent to 

dimk Ad = s dimk R,_,,, for d > t ~ 1. 

By Proposition 2.2(vi) we have that TorK(A, k) is concentrated in degrees ift- 1 and 

i+t, for i= 1,2 ,..., r- 1 if and only if Torf(A, k)d = 0, for d < t and Torf_, (A, k)d = 0, 

for d>r- l+t. 

By the argument above, the latter conditions are equivalent to say that dimk Ad = 

dimh.Rd, for d=O,l,..., t- I and that dimkAd=s dim,:Rc-d, for d=t,t + l,..., c. 

Hence the proposition follows. 0 

Because of the special form of the Hilbert series of compressed level algebras we 

are able to use Eq. (2.2) to get the following proposition. There is a similar result for 

short graded algebras due to Cavaliere et al. [9, Proposition 1.61. 

Proposition 3.3. Let A = RJI he a compressed graded Artin leael algebra of embed- 

ding dimension r with socle in degree c of dimension s such that the initiul degree 
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qf I is t. Then we huve that 

dimk Torf(A, k);+,_l - dimk Torp_,(A, k)i+,-I 

= t-,,i-1) (t;!;r)-.y-i) (‘,iT’), 
( 

jtir i=1,2 ,..., r. (3.3j 

Proof. Because of Proposition 3.1 we can assume that t < c. We will use the identity 

By Proposition 2.2(vii) we have that 

(1 -z)‘Hilb,4(z)=e ~(-I)‘z”~~~= kF(-l)‘dim~Tor~(A,k)~z”. (3.5) 
j=iJ j:, ;zlJ ddj 

Since A is compressed we have dimk Ad = min{ (‘~~~-:d),~~ (‘-i”i-“)}, which yields that 

Since t 5 c it follows from (3.4) and (3.6) that 

(1 - z)’ HilbA(z) 

= I+-& 
i=l ( t--l) (t;‘:‘p 

r 

+S(-l)rZ~+~‘+S(-l)~Z~+C 
c )( 

(-1 ’ 

i=l 

+;I:-‘) (c;i;r)zt-c.-, 

= 1 +S(-l)rZr+c 

iC(-I)’ 
i=l (( 

t-I’:‘) (t;];r) 

(3.7) 
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From Proposition 3.2 we have that, for i = 1,2,. . . ,r - 1, the last sum in (3.5) is 

taken from d = t + i - 1 to d = t + i. Hence it becomes 

1 + I(- 1)’ dimk Torf(A, k)i+l-rZiftp’ 

r-l 

+ c (- 1)’ dimk Torf(A, /c)~+,z’+’ + s( - 1 )r+c~r+c. (3.8) 
i=l 

The proposition now follows from equating the coefficients of z’+‘-’ in Eq. (3.8) with 

the same coefficient in the final expression of (3.7). 0 

Because of Proposition 3.2 it is convenient to introduce the following notation. 

Notation 3.4. Let A be a compressed Artin level algebra of embedding dimension Y. 

Then we define 6: = dimk Torp(A, k)+_, and bj’ = dimk Tor”(A,k)i+,, for i = 1,2,. , 

r - 1. We sometimes express the Betti numbers of a compressed Artin level algebra as 

6; b; . . b:_, 

b’, b; . . . b:‘_, 
(3.9) 

Definition 3.5. Let A = R/Z be a compressed graded Artin level algebra of codimension 

r with socle of dimension s in degree c. Then A is extremely compressed (cf. [lo]) 

if there is an integer do such that 

(3.10) 

Observe that, since A is compressed, the initial degree of I is t = do + 1 

The following proposition is a special case of a result by Buchsbaum et al. [ 16, 

Proposition 4.11, where they prove that under certain numerical conditions on the socle 

type of a compressed algebra the resolution becomes almost linear which means that 

all the maps in the resolution is of degree 1 except for the first and the last. See also 

[lo, Proposition 161. 

Proposition 3.6. Let A = R/I be an extremely compressed Artin level algebra. Then 

we have that ni,, = t + i ~ 1, ,for all i, j, where t is the initial degree of I. 

Furthermore, the Betti numbers of A are 

c-tfr 

i-l 

for i=1,2 ,..., r- 1. 
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3.1. Existence of generic Betti numbers for level algebrcls 

As we saw in Proposition 3.6 the Betti numbers of an extremely compressed level 

algebra are uniquely determined by the Hilbert function, or by the embedding dimension 

together with the degree and dimension of the socle. We could hope that this is the 

case also for compressed level algebras in general, but this is not true. There are many 

possibilities for the Betti numbers of compressed level algebras with the same Hilbert 

function. 

However, inspired by Proposition 1.4, we will prove that there are generic Betti num- 

bers of compressed level algebras, in the sense that these Betti numbers are obtained 

by A = R/ Qjd >0( V : R)d, for a generic subspace V CR,.. More precisely, we will prove 

that there is a non-empty open set in the Grassmannian parametrizing all codimension 

s subspaces of R,. such that all algebras A = R/ ed > ,,( V : R)d with V in this open set 

have the same Betti numbers. This is not very surprising and the hard problem is of 

course to actually find these generic Betti numbers. The situation is similar to the case 

of the coordinate ring of a generic set of points in projective space as we will see in 

Section 3.4. 

The way we will prove the existence of generic Betti numbers is to produce a matrix 

with generic coordinates such that the rank of this matrix determines a certain Betti 

number (cf. Cavaliere et al. [9, Proposition 2.11.) 

Definition 3.7. Given integers s and c. Let qc’, j = 1,2,. . . ,s, rn E .dlc be independent 

variables over k. Let t be the least positive integer such that s (“-f”;- ) < (‘fr?;’ ) We 

define s (‘~,!~~~‘) x (‘-,“i- ’ )-matrices A 1 , . . . , A,., as block matrices built by s blocks 

A:.“. for I= 1,2,. . ,s, where (A.j”),,,m = )?S$m, for all m’ E c flcpt and all m t , Ct,-, . 

Furthermore, for i = 2,3 ,...,r - 1, we define a block matrix M; with (;J,) x (T) 

blocks A,,,{ where CY E .V(i - 1) and b E Y(i) (recall Y(i) from Definition 2.3). These 

blocks are defined by 

A (-l)‘i’Ai, ifB=(jl,jz ,...,. i;) and x=(jl,..., j, ,..., j,), ~ 
x./j - 

0 if x @ /I 
(3.12) 

We observe that the entries of Mi are given by 

(3.13) 

where [j = (jl, jz,. . . ,,j;). 

We sometimes want to specialize the variables r(n” to elements ,I$’ in k. We will 

then denote the resulting matrix by M/. 

Recall from Definition 2.3 that for c( = (.jl, j2 , . . . ,,ji ) E Y(i) we denote e,, A A e, 

by E,. 
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Proposition 3.8. Let A = R/I be an Artin level algebru w)ith socle of dimension s in 

degree c und let V = I, be given by 

(3.14) 

jbr some elements $‘, J = 1,2,. ,s, m E J& of k. Then we have that ker(rr) f’im(6i) 

from Proposition 2.5 is given by all elements of the form 

where &!’ E k, jbr m E i A?_, und b E 9’(i), satisfying 

c (",~)(,,j,m'),(,r.m)5~)=0, 

(3.15) 

(3.16) 

for CI E .V(i - I), 1 <j <s und m’ E Jc_(. 

Proof. The image of the map 6; : /ji W ~3 Rt_ I + A’-’ W @R, is generated by the set 

{m&(E,j) 1 m E J?‘-1, fl E Y(i)}. We now look at the map 71: Ai-’ W 8 Rt + Ai-’ W 

c$ At. By Proposition 1.2, the kernel of the map R, + A, is given by (V : R),, which in 

coordinates is the set of elements xmE,fG <,m, such that 

c A$), t,=O for all ,j=l,2,...,s and all rn’EJ&. (3.17) 

mE. c 

Hence we have that ker( rc) n im(6,) is given by the set of elements 

where tl;f” E k, for all fl E s/i(i) and all m E 4’-, , such that 

(3.18) 

(3.19) 

for all j = 1,2,. . , s, and all m’ E J%‘_~. Eq. (3.16) is a reformulation of (3.19) using 

the matrix AI/. 0 

Proposition 3.9. Let A = R/I be an Artin level algebra with socle of dimension s 

in degree c determined by the elements l$’ E k, for ,j= 1,2,.. .,s and m E J& (IS in 
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Proposition 3.8. Then we have that 

(3.20) 

(3.21) 

,for i=2,3,. . ,r - 1. 

Proof. The Betti numbers bj are given by the dimension of ker(rc)nim(bi) by 

Proposition 2.5. Since dimk im(&) = (‘-l’f-’ ) (‘~~~‘), by Proposition 2.4, and since 

ker(n)nim(&) is given by (3.16), the first assertion follows from the dimension the- 

orem for vector spaces. The second assertion is a consequence of the first assertion 

together with Proposition 3.3. 0 

Corollary 3.10. There is a non-empty open set U in the Grassmannian parametrizing 
all codimension s subspaces of R,, such that the Betti numbers of the level algebra 

A=R/@&(V:R) d are the same for all V in U. 

Proof. We can restrict our attention to compressed algebras, since these are para- 

metrized by a non-empty open set (cf. Proposition 1.4) of the Grassmannian. Hence 

we have, by Proposition 3.3, that the Betti numbers bi are determined by the numbers 

hi and by’,, for i=2,3 ,..., r - 1. By Proposition 3.9 we have that these numbers are 

given by the rank of the matrices Mi. 

We now introduce the polynomial ring S = k[nz), y12), . . , r#&./l:, where I?,?’ are 

independent indeterminates over k. 
For each i = 2,3,. . . , r - 1 there is a greatest integer Ni such that there is some non- 

zero Ni x Ni-minor of Mi. This means that there is a non-empty open set U’ in the 

affine space with coordinate ring S such that rank Mi(lg’) = Ni for (2:‘) in U’. Hence 

there is a non-empty open set U in the Grassmannian parametrizing codimension s 

subspaces of R, such that V E U implies that the Betti numbers of A = R/ @,“=,( V : R)d, 

are given by b: = (‘-,“f-‘) (‘llf’) - Ni. 0 

3.2. Conjecture on the generic Betti numbers of compressed algebras 

After having established the existence of generic Betti numbers of compressed level 

algebras, we would like to determine these numbers. We conjecture that the generic 

Betti numbers are as small as we can hope for, that is that there are no relations 

between the rows and columns of the matrices described in the previous section except 

for the ones given by the Koszul complex. 

In order to prepare a guess for the generic Betti numbers of compressed level alge- 

bras, we will study the numbers that occur in Proposition 3.3. Therefore we introduce 

the following notation. 
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Notation 3.11. For any positive integers r, s and c we define the sequence of numbers 

dr,&,...,d, by 

for i=l,2,...,r, (3.22) 

where t is the least positive integer such that (I :‘-_r ’ ) >s( ‘-:‘;-‘). 

By Proposition 3.3 we have that hj - b:y, = d,, for i = 1,2,. . . , r. Since b: > 0 and 

b:‘>O for all i, we have that they are simultaneously minimized if one of 6: and by_, 

is zero for each i. That means that we have bj =max{O,d,} and biy’ =max{O, -d,} 

for all i = 1,2,. . . , r. 

It is also possible to see the problem of finding the generic Betti numbers as a 

problem of finding the maximal possible rank of the matrices ML defined in the pre- 

vious section. Since the dimension of im(&) is (‘-f’:-‘) ( ‘,ATr) by Proposition 2.4 

we have that rank Mi < (‘-:T;-‘) (‘Jz’). By symmetry we have the same kind of 

relations between the rows of Mi as between the columns, and we therefore have that 

rankMj<s(C-:+:-‘)(‘~~t’). These two inequalities for the rank of M, show that the 

dimension of the null space of Mj is at least max{O,di}. 

By Proposition 2.2(vi) we have that nt,, <nl,i+t. This means that b: =0 implies that 

bi,, =O. Hence, if max{O,d;} is to give plausible candidates for the Betti numbers of 

A, we must have that d,+, 5 0 whenever d, < 0. This is the case as we can see in the 

following proposition. 

Proposition 3.12. Given positive integers r, s and c, there is an integer io such that 

di>O for i<io and di<O for i>io. 

Proof. If t = c + 1, the second tern1 of d; vanishes for i = 1,2,. . . , r - 1. Hence we can 

assume that t <c. 

We see that d, = (‘::;I) - s(‘-,!fl;-‘), and d,. = (‘-t”;-‘) - s( ‘;L:“). Thus the 

definition of t yields that d, > 0 and d,. LO. Now we write the expression for di in a 

new fashion. 

d, = 
t-:T:-l)(t;lf’)_s(‘:_:-i)(c;i:r) 

(t - 1 + i - l)!(t - 1 + r)! 

= (t - l)!(i - l)!(t - 1 + i)!(r - i)! 

-s 
(c ~ t + r - i)!(c - t + r)! 

(r - i)!(c - t)!(i - l)!(c + 1 - t + r - i)! 
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t(t - 1 + r)! r-l 

( > 

(c + 1 - t)(c - t + r)! r-1 

- (t - 1 + i)t!(r - I)! i - 1 -S(c+l-t+r)(c+l-t)!(r-l)! i-l ( 1 

=(:I:)[(‘,‘:r)~-“(c~~:r)c+;r:r:_i]. (3.23) 

It is now easy to see that the expression inside the brackets at the last step of (3.23) is 

decreasing in i, since it is a difference between a decreasing function and an increasing 

function. The assertion of the proposition follows because the factor outside the bracket 

is positive. q 

Conjecture 3.13. Let k be a field of characteristic 0. Assume that r > 3 and that c > 1. 

Let V be a subspace of R,. of codimension s in genera1 position and let A = R/I where 

I = @?=a( V : R)d. Then the Betti numbers, hi = hi + b(‘, of A are given by 

b( = max 0, 
I( 

b:’ = max 
{ ( 

0, s c-;+rl;-l)(c-;+r)-(t-;+i)(;I;.T;)}. 

(3.24) 

for i = 1,2,. . , r - 1, where t is the initial degree of I. 

Remark 3.14. In Sections 3.3 and 3.4 we will show that Conjecture 3.13 can be proved 

in some cases and in Section 4 we will present computer generated evidence for the 

conjecture. In fact, we would not have stated the conjecture if it had not been for these 

examples. 

We can also formulate the conjecture in the following way: there exists an integer i 

such that b:,, = bi\, = 0. If such an integer exists, we have by Proposition 2.2(viii) that 

the Betti numbers are determined by the Hilbert series. Hence the Betti numbers must 

be the ones given in Conjecture 3.13. Moreover, by Proposition 3.12, the converse is 

also true. 

We will now give a couple of examples to show that Conjecture 3.13 does not hold 

if the assumptions on the embedding dimension and on the characteristic are dropped. 

Example 3.15 (cf Schrtryer [19]). Let r =5, s= 1 and c=2t - 1. Thus we are in the 

Gorenstein codimension 5 case with socle in odd degree. The rank of the matrix iVl3 is, 

according to Conjecture 3.13, supposed to be (f-:+2) (‘-~“) = ‘(r+‘)(t13)(t+4), which 

is odd if t E 2 (mod 4). However, in characteristic 2 we have that M3 is anti-symmetric 

~ in a suitable ordering of rows and columns. Hence the rank cannot be odd and M3 

drops rank by at least 1. 
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Example 3.16. Let r = 3, s = 1 and c = 2t - 1. By a result by Buchsbaum and Eisenbud 

[7, Corollary 2.21 the minimal number of generators of a Gorenstein ideal of codimen- 

sion 3 has to be odd. According to Conjecture 3.13, the number of generators would 
be (t-F”> (t-;+3) _ (f-5 (1-F’) = 

t + 1, which is impossible if t is odd. Hence 

there has to be at least one generator in degree t +- 1 if t is odd. 

3.3. Connections to generic forms 

In some cases we have that the generic Betti numbers are obtained by algebras which 

are quotients of R by generic forms. In these cases we can use a result of Hochster 

and Laksov [15, Theorem l] to verify Conjecture 3.13. Here we state a slightly weaker 

result than the one proved in [ 151. 

Proposition 3.17. rf’ V is a subspace in general position in R, with rdimk V < 

dimk R,+,. Then there are no linear syzygies among the generators of V. 

Lemma 3.18. Let V be a codimension s subspace in general position in R,. If rs2 

dimk R,_, then there are no generators of @,>O( V : R)d in degree less than c. _ 

Proof. From Proposition 1.4 follows that 

codimk((V:R),_t,Rc_i)=min{dimkR,._i,r-s}. (3.25) 

Hence codimk(( V : R),._l , R,_ 1) = dimk R,_ 1 and ( V : R),_l = 0, which proves the 

lemma. 0 

Proposition 3.19. Proposition 3.17 is equivalent to Conjecture 3.13 in the case where 
r dimk V < dimk R,, 1. 

Proof. Assume that r 22. Let V be a subspace of R, such that r dimk V < dimk R,+l 

and let I = @,>o( V : R)d. Then we have that _ 

rs = r(dimk R, - dimk V) >rdimk R, - dimk R,+I 

r_(r-l+c+‘) 
c+l 

r-l+CdimkR,-, 
c 

=(‘- l)(‘-’ +C)dimkR,_,>dimkR,_,, 
cfl 

since r 22. Hence we can apply Lemma 3.18 to see that the initial degree of I is c. 

From Proposition 3.17 we get that bb = 0 since there are no linear syzygies among 

the forms of degree c in 1. Thus the Betti numbers of A = R/I have to be minimal 

given the Hilbert function and therefore Conjecture 3.13 holds in this case. 
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that 

(3.27) 

which is zero since c( ‘TL;’ ) =rdimkR,-dimkR,+, =r(s+dimk V)-dimkR,+i<rs. 

Hence Proposition 3.17 is a consequence of Conjecture 3.13 in this case. 0 

3.4. Connections to generic points in projective spuce 

There is a conjecture similar to Conjecture 3.13 for a generic set of points in pro- 

jective space. This conjecture was stated by Lorenzini [ 181 and is usually called the 

Minimal Resolution Conjecture, or MRC for short. Another conjecture concerning ide- 

als of generic points is the Ideul Generation Conjecture, IGC, formulated by Geramita 

and Orecchia [13]. The MRC implies the IGC. There are cases where the MRC seems 

to be false, e.g. 11 points in general position in P6, where no calculation so far has 

given the conjectured Betti numbers. However, it is not yet proved that this is re- 

ally a counterexample. To do this one has to prove that the open set where the Betti 

numbers are the expected ones is empty, which cannot be verified with only a few 

examples where random points fail to have these Betti numbers. There are no known 

counterexamples to the IGC. 

Setup 3.20. Let X be a set of n points in P’. Then the homogeneous coordinate ring 

A of X has dimension 1 and its Hilbert function is bounded above by max{n, dimk Sd}, 

where S = k[xo,xi , . . . ,xr] is the homogeneous coordinate ring of P’. If X is in generic 

position the Hilbert function of A is equal to max{n, dimk Sd}. We can assume that 

no points of X lie on the hypersurface x0 = 0, so that xc is not a zero-divisor in A. 
Let R = k[x~,xz,. . ,xr] = S/(x0). Let c be the least integer such that (‘T”) >n and let 

s=n - (‘+I-‘). We then have that s<(‘fr”) - (‘+:-I) = (“;I:“). 

It is easy to see that the Hilbert function of the artinian reduction B = A/(q) in the 

generic case is equal to the Hilbert function of a compressed Artin level algebra. In fact 

we have that HB(d) = HR(d), for d cc, Hs(c) = s and Hs(d) = 0, for d > c. If B is a 

level algebra, we have the inequality HB(d)l min{H&d),s&(c-d)}. In particular we 

have that HB(C - 1) = HR(C - 1) < sH& f ) = sr. It follows from the following theorem 

due to Trung and Valla [21] on the Cohen-Macaulay type of the coordinate ring of a 

set of points in generic position that it is also true that B is level if this inequality holds. 

Theorem 3.21 (Trung-Valla [21]). Let B be the Artiniun reduction of the coordinate 

ring A qf’u set qf n generic points in P’. Then 

dim,,oc(B)~_~=max{0,(r~~~2)+r (r+:- ‘)-rn}, (3.28) 

where c is the highest degree such that B, # 0. 



126 M. BoijlJournul of Pure und Applied Al&m 134 (1999) 111-131 

Corollary 3.22. If HR(c ~ 1) <rs the coordinute ring oj’a set of n generic points in 

P’ is a compressed level ulgebra bvith socle of dimension s in degree c. 

Proof. Since we have that s = n - (“+:- ’ ) we have from the theorem that 

dimk Sot(B) = max{O, HR(c - I ) - sr}. (3.29) 

Hence we get that Soc(B),._t =0 if the assumption of the corollary is satisfied. Since 

HB(C ~ 1) = HR(C - I), we have that the socle is a priori located in degrees c - 1 and c, 

it follows that B is a compressed level algebra. 0 

Conjecture 3.23 (Minimal Resolution Conjecture, Lorenzini [ 181). Let A be the ho- 

mogeneous coordinate ring of a set of n points in generic position in P’. Then there 

exists an integer i such that Toq+,(A, k)i+C = 0 and Torf_,(A, k)i+c_I = 0, where c is 

the least degree for which n 5 dimk S,. 

Thus the MRC gives the same Betti numbers as Conjecture 3.13 in the case described 

in Corollary 3.22. It it follows that under these circumstances the MRC implies 

Conjecture 3.13. 

Since the MRC is proved for some values of Y and n we have that Conjecture 3.13 

is also proved if n satisfies the condition in Corollary 3.22. 

The Minimal Resolution Conjecture has been proved in the following cases: 

l For any number of points in P* by Geramita and Maroscia [ 121. 

l For any number of points in P3 by Ballico and Geramita [l]. 

l For (‘:*) - r points in P’ by Lorenzini [ 181. 

l For Y + 1, r + 2, Y + 3 and Y + 4 points in P’ by Lorenzini [ 181, by Geramita and 

Lorenzini [ 1 l] and Cavaliere et al. [S]. 

l For r<9 and n<50, except for the cases (r,n)=(6,11), (7,12) and (8,13), by 

Beck and Kreuzer [3]. 

l For large numbers of points in any P’ by Hirschowitz and Simpson [ 141. 

3.5. Generic Betti numbers qf Gorenstein Artin algebras in embedding dimension 4 

We now prove that Conjecture 3.13 holds for Gorenstein Artin algebras of embedding 

dimension 4. For this we will use that the Minimal Resolution Conjecture has been 

proved in P3 and that the canonical module of the coordinate ring of points can be 

identified with an ideal of the ring itself. Assume that the characteristic of k is 0. 

Proposition 3.24. The generic Betti numbers of a Gorenstein Artin algebru oj 

embedding dimension 4 bvith initial degree t und socle degree 2t-1 are 

(3.30) 
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Proof. We will use the result of Ballico and Geramita [l] which shows that the 

Minimal Resolution Conjecture holds for points in P3. We first show that there is 

a set of points in generic position in P3 whose Betti numbers are given by 

(3.3 I ) 

Let X be a set of (‘-f.“) is points in generic position in P3. Let R = k[xo,xl,xz,xj] be 

the homogeneous coordinate ring of P3 and let A(X) = R/I(X) be the coordinate ring 

of X. Then the initial degree of the ideal I(X) CR is t. Since the Minimal Resolution 

Conjecture holds in P3, or in fact by Theorem 3.21, we have that Tor:(A(X),k) is 

concentrated in degree t + 3, i.e. bi = 0, if 

t-t1 ( > 2 
- 3s < 0. (3.32) 

Furthermore, by the same result, Torp(A(X),k) is concentrated in degree t, i.e. b’,’ = 0, 

if there are sufficiently many generators in degree t to span the ideal in degree t + 1. 

That is, if 

3[(2;‘>-+(‘;3). (3.33) 

The inequalities (3.32) and (3.33) together show that the Betti numbers of A(X) have 

the form (3.31) if 

(t + l)t < s < t(t + 2) 
6 --3’ 

(3.34) 

There has to be an integer s in this range if t > 2, since the length of the interval is 

t(t + 3)/6. 

Now we use the fact that the canonical module OX of A(X) can be embedded as an 

ideal wx CA(X) of initial degree t (cf. [4]). This means that we have a short exact 

sequence 

0 4 ox --f A(X) 3 A + 0, (3.35) 

and the corresponding long exact sequence of TorR splits up in the following way 

0 + Torf(A,k) + Torf(wx,k) + 0 

0 + Torf(A(X),k) + Torf(A,k) -+ To$(wx,k) 4 0 

0 + Torf(A(X),k) ---f Torf(A,k) --f Torr(ox,k) + 0, 

0 + Torf(A(X),k) + Torf(A,k) --) Tori(wx,k) 4 0 

0 + To$(A(X),k) --i Tort(A,k) --f 0 

(3.36) 

since Tor[(wx,k) lies in degree 2t + 3, Torf(A(X),k) and Torf(o,y,k) lie in degree 

t + 3, To$(A(X),k) and Torp(ox,k) lie in degrees t + 1 and t + 2, Tork(A(X),k) and 

Torff(o,) lie in degree t, and To&A(X),k) lies in degree 0. In this way we can 
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compute the Betti numbers of A in terms of the Betti numbers of A(X). In partic- 

ular, we see that Torp(A,k) is concentrated in degree t, Torf(A,k) is concentrated 

in degree t + 3. It follows from Proposition 2.6 that A is a Gorenstein Artin algebra 

with socle in degree 2t - 1, since Torf(A,k) = k(-2t - 3). Hence by Proposition 3.2, 

we conclude that A is compressed. The generic Betti numbers are now given by 

Proposition 3.3. 0 

4. Computational evidence for Conjecture 3.13 

The main reason for stating Conjecture 3.13 is that it holds for a great number 

of examples. Most of those are obtained by computer experiments by means of the 

computer algebra system Macaulay [2]. Since the conjecture concerns the generic Betti 

numbers of compressed algebras, it suffices to find one algebra for each set of para- 

meters (Y, c, s) whose Betti numbers agree with the conjectured Betti numbers. We can 

by some observations about the generic Betti numbers of level algebras reduce the 

number of cases to consider dramatically. More precisely, we only have to check the 

conjecture for a few values of the socle dimension s for each choice of embedding 

dimension r and socle degree c. 

In this section we will give a list of the cases where the Conjecture 3.13 has been 

verified by computer calculations. 

4.1. Theoretical tools Jbr the computations 

Since the computations of resolutions by Griibner bases are rather time consuming, 

it is valuable to reduce the number of such calculations to a minimum. 

First we observe that for fixed r and c, we can find pairs of integers si and s2 such 

that if the conjecture holds for (Y, c, ~1) and for (r, c, ~2) then it holds for all (r, c, s) 

with s between si and ~2. 

Moreover, we do not need to compute all the Betti numbers to verify the conjecture, 

but only the linear part of the resolution, or the numbers bj, for i = 1,2,. . . , Y - 1. 

Lemma 4.1. Let A = R/I and A’ = R/I’ he compressed level algebras with parameters 
(r,c,s) and (r,c,s’) respectively and whose Betti numbers are the generic Betti num- 
bers. Suppose that the initial degree of I and I’ is t and that s<s’. Then we have 

that 

dimk TO$(A,k)i+~_~ > dimk TorF(A’,k)l+f-i, 

dimk Torf(A, k);+, 5 dimk Torf(A’, k)i+t 

for i= 1,2 ,..., r. 

(4.1) 

(4.2) 

Proof. We recall from Definition 3.7 the matrices il4,. Let h4, and II4: be the ma- 

trices corresponding to the integers s and s’, respectively. Then we have that M, is 
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a submatrix of M;, for all i=2,3,. . . , r. By Proposition 2.4 we can delete rows and 

columns of Mi and M: so that their sizes are s(“-:‘~-~) (“LA:‘) x (‘-itf-‘) (‘Tz”) and 

). 

dimk Tor”(A, k)i+,_ 1 - dimk To$(A’, k)i+t_ 1 = rank M: - rank M, > 0, (4.3) 

where the inequality holds since M, is a submatrix of M:. Furthermore, we have that 

dimk Torf_ , (A’, k)i+t_ I - dimk Tar:, (A, k)+_ I 

(4.4) 

When we have reduced the number of rows in Mi and Mi as indicated above, we have 

that the number of rows added in M: relative to Mi is given by (.~-s)(“-~~~-~) (“I_::‘). 

Hence the rank cannot increase by more than this amount and the quantity in (4.4) is 

non-negative. 17 

As a consequence of Lemma 4.1, we have that we only need to verify Conjec- 

ture 3.13 for a few values of s for each choice of r and c. More precisely, if we 

have that TorF(A,k)i+t_l = 0 for a generic level algebra with parameters (r, c,s), then 

Torf(A’,k)i+l_ 1 = 0 for all generic level algebras A’ with parameters (u,c,s’) and 

s’ >s. In the same way we have that if TorR(A, k)i+, = 0, for a generic level algebra 

with parameters (r,s,c), then Tor,F(A’,k)i+t =0 for all generic level algebras A’ with 

parameters (Y, c, s’) and s’ <s. 

The application of these two implications is most easily illustrated by an example. 

Example 4.2. Suppose that we have verified Conjecture 3.13 for the parameters 

(Y, c,s) = (4,4,6) and (4,4,11). This means that we have found compressed level 

algebras A’ and A” with resolutions 

0 i R6(-7) ---) R14(-6) + R2’(-4) --+ R14(-3) + R + A’ + 0 (4.5) 

and 

0 + R”(-7) + R34(-6) + R3’(-5) @ R(-4) + R”(-3) + R + A” + 0. 

(4.6) 

By the notation of 3.4 the Betti numbers of these algebras are 

( b” ‘d P4) and (: :o !4). (4.7) 

NOW let A be a compressed algebra with the generic Betti numbers and parameters 

(u, C,S) = (4,4,s), where 6 5 s 5 11. Then we have from Lemma 4.1 that 

dimk Torf(A, k)~ 5 dimk To&A’, k)S = 0, (4.8) 
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since s > 6, and that 

dimk Torf(A, k)d 5 dimk Torf(A”, k)b = 0, 

since s 5 1 I. Hence we have that the Betti numbers of A can be written as 

(4.9) 

(4.10) 

The Betti numbers of A are, by Proposition 2.2(viii), determined by the Hilbert function 

of A and the resolution of A verifies Conjecture 3.13. Hence we do not need to actually 

compute the Betti numbers for 6 <s < 11. 

We will now give a summary of the cases where Conjecture 3.13 has been proved 

by means of computers. All these calculations has been done by Macaulay and hence 

modulo 31 991. The results are therefore valid in characteristic 31 991 and in charac- 

teristic 0. 

4.1.1. Gorenstein Ariin ulgebras 
The case of Gorenstein Artin algebras is probably the most critical one for 

Conjecture 3.13. As we saw in Example 3.16 the conjecture is not even true for 

Gorenstein Artin algebras in embedding dimension three. For even socle degree, there 

is no problem since compressed Gorenstein Artin algebras of even socle degree are ex- 

tremely compressed. Hence they have almost linear resolutions, by Proposition 3.6. We 

have computed the Betti numbers of generic compressed Gorenstein Artin algebras for 

several embedding dimensions and socle degrees and thereby verified Conjecture 3.13. 

The results of these computations are displayed in Table 1. 

4.1.2. Artin level algebras of higher socle dimensions 
For higher socle dimensions than 1 there are no counterexamples to Conjecture 3.13 

in embedding dimension 3 and we have therefore included these cases in the Table 2. 

For the embedding dimensions and socle degrees in Table 2, we have verified the 

conjecture for all possible dimensions of the socle, using Lemma 4. I. 

Table I Table 2 

Cases of compressed Gorenstein Artin alge- 

bras of odd socle degree where Conjecture 

3. I3 has been verified 

Cases of compressed Artin level algebras 

where Conjecture 3.13 has been verified 

Emb. dim. Socle degree 

3 21c<l8 
4 2<c<lO 

5 2<c<6 
6 21~55 
7 2<c<3 
8 2<c<3 

9 2<c<2 
IO 2<c<2 

Emb. dim. Sock degree 

5 3,5,7,9, I I. I3 

6 3,5,7,9 
7 3,5,7 
8 3,5 
9 3 

10 3 
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